Microsvch.ru

Биология и биотехнологии

Перенос ионов в трехслойных ионообменных мембранных системах при интенсивных токовых режимах

Необходимость модификации метода параллельной стрельбы вызвана тем, что метод параллельной стрельбы с постоянным шагом позволяет решать сингулярно возмущенные задачи для не очень малых значений параметра при старшей производной . При меньших значениях малого параметра отрезок интегрирования приходится разбивать на большое количество подотрезков ~105…107. В результате размерность системы увеличивается настолько, что реализация итерационной процедуры на ЭВМ становится затруднительной из-за большого объема хранимых данных, а продолжительность времени вычислительного процесса становится очень большим. В то же время, при решении систем уравнений Нернста-Планка и Пуассона область, в которой интегрируемые функции резко возрастают, занимает сравнительно небольшую долю внутри отрезка интегрирования. Так как в обычной реализации метода параллельной стрельбы длины всех подотрезков предполагаются одинаковыми, то наличие узкой области, в которой значения интегрируемых функций достигают больших величин, определяет размерность всей итерационной процедуры. Использование же автоматического разбиения области интегрирования на подотрезки разной длины позволяет значительно (на несколько порядков) сократить размерность процедуры параллельной стрельбы.

Модификация метода основана на разбиении исходного отрезка, на котором решается задача, на подотрезки, длины которых, в отличие от метода параллельной стрельбы с постоянным шагом, вообще говоря, не одинаковы. Величина шага определяется автоматически быстротой изменения интегрируемых функций. Точка wi становится точкой разбиения исходного отрезка на подотрезки, если не выполняется хотя бы одно из условий

, (1)

где – интегрируемые функции, M – наперед заданная константа.

Кроме того, вводится замена переменных:

; ; , (2)

где C1 – концентрация противоионов; CА – концентрация коионов; Е – напряженность электрического поля.

Предложенная замена переменных позволяет избежать появления отрицательных значений концентраций (что противоречит их физическому смыслу) и способствует повышению устойчивости итерационного процесса решения краевой задачи.

Для тестирования метода решалась известная краевая задача для системы уравнений Нернста-Планка и Пуассона с малым параметром при старшей производной, описывающая перенос ионов сильного электролита типа NaCl через отдающий противоионы диффузионный слой толщины d.

В новых переменных краевая задача записывается в виде:

(3)

Для повышения надежности вычислительных итераций также использовался метод продолжения по параметру и предложенная А.Н. Тихоновым регуляризация метода Ньютона. В качестве параметра продолжения был выбран малый безразмерный параметр . Перейти на страницу:1 2 3 4 5 6 7 8 9 10

Утки Почему у птиц не мерзнут ноги? Вам, вероятно, не раз случалось наблюдать, как на замерзшем озере вокруг полыньи бодро толпятся утки. И хотя птицы проводят на льду или в холодной воде большу ...

Гомо сапиенс и геном Гомо сапиенс и геном ...

Брюхоногие моллюски прудовики, лужанки, битиния, катушки Брюхоногие моллюски: прудовики, лужанки, битиния, катушки ...